Multiscale Techniques to Derive Principles of Nanosystem Behavior
The Ortoleva group uses multiscale techniques to derive principles of nanosystem behavior from laws of molecular physics. With support from the NSF, DOD, DOE and NIH, they study quantum dot, superconducting and graphene nanoparticles, viral processes, and nanocapsules for drug delivery. They enable computer simulations of supra-million atom systems with angstom resolution over long times (left image), and atomic-scale electrical potential.
David Clemmer
Distinguished Professor
Professor and Robert & Marjorie Mann Chair
Richard DiMarchi
Distinguished Professor
Linda & Jack Gill Chair in Biomolecular Science
Trevor Douglas
Earl Blough Professor of Chemistry
Chemical Biology, Inorganic, Materials
Amar Flood
James F. Jackson Professor of Chemistry
Caroline Chick Jarrold
Class of 1948 Herman B Wells Endowed Professor
Adjunct Professor, Physics
Martin F. Jarrold
Distinguished Professor and Robert & Marjorie Mann Chair
Nicola L. B. Pohl
Professor and Joan & Marvin Carmack Chair, Associate Dean of Natural and Mathematical Sciences
Jonathan Raff
Associate Professor (SPEA),
Adjunct Professor (Chemistry)
Michael VanNieuwenhze
Standiford H. Cox Professor of Chemistry
Theodore Widlanski
Professor & Associate Vice President for Engagement