

MINOR in Chemical and Physical Biology (CPB)

(rev. 11/2017)

Note: Any course can fulfill the requirements of a Ph.D. major OR a CPB minor, not both.

Required QCB Training Program courses, to be taken by all QCB TP-supported trainees

Enrollment	Course	Credits	Title/Description
Students are	CHEM C680	1.5	Introduction to Quantitative Biology and Measurement
permitted to enroll			Core Topics in ligand binding and coupled equilibria and single
in graduate			molecule science, electron microscopy and biological mass
program year 1			spectrometry. Course focuses on the capabilities of each type of
(with permission of			measurement: data analysis, sensitivity, resolution, quantitation, and
instructor) or year			limitations. This course is required for QCB trainees and can also be
2			used to fulfill the 6 credit CPB minor.
	CHEM C681	1.5	Introduction to Chemical Biology I
			Basic elements of chemical biology with a chemistry-centered focus.
			This course will cover peptide synthesis and ligation methods,
			oligonucleotide synthesis, diversity oriented synthesis and
			combinatorial libraries, bio-orthogonal reactions, high-throughput
			screening methods and their use in drug discovery, and secondary
			metabolism. This course is required for QCB trainees and can also be
			used to fulfill the 6 credit CPB minor.
Students typically	CHEM C689	1	Quantitative & Chemical Biology Journal Club
enroll in graduate			Student presentations on topics of interest to QCB training faculty,
program years 2 &			with typically 3-4 research foci per semester organized by QCB
3			trainers. Also features a comprehensive module in Responsible
			Conduct of Research (RCR) that satisfies NIH-mandated training in
			RCR and ethics. This course is required for QCB trainees. However,
			it does not count toward the 6 credit CPB minor.

The Chemical and Physical Biology (CPB) minor requires completion of C680 and C681 above and a total of 3 credit hours from the electives listed below.

Course #	Credits	Title with description and prerequisites	
BIOC B530/	1.5 credit	Macromolecular Structure and Function	
CHEM C581		Prerequisite: B501/C584 or C483/C484 plus C341, or Instructor consent ¹	
		Undergraduate (bio)physical chemistry (equivalent to C481 or C361) is strongly	
		recommended. Stabilizing forces in macromolecular structures; protein structure analysis;	
		nucleic acid structure and probing; structure determination by NMR and X-ray	
		crystallographic analysis.	
BIOC B531/	1.5 credit	Biomolecular Analysis and Interaction	
CHEM C582		Prerequisite: B501/C584 or C483/C484 plus C341 and B530, or Instructor consent ¹	
		Undergraduate (bio)physical chemistry (equivalent to C481 or C361) is strongly	
		recommended. Principles of inter- and intramolecular interactions; thermodynamic and	
		kinetic analysis of complex binding; experimental methods for analysis of macromolecular	
		structure and binding.	
BIOC B540/	1.5 credit	Fundamentals of Biochemical Catalysis	
CHEM C588		Prerequisite: C342, C483/C484, or Instructor consent ¹	
		General properties of enzymes and basic principles of enzymatic reactions are discussed.	
		Enzyme kinetics; inhibitor types, their importance and their effects on enzymes will be	
		covered. Students will gain facility with thermodynamics, catalytic mechanisms, kinetics	
		and binding equilibria as they apply to proteins.	

BIOC B541/	1.5 credit	Enzyme Mechanisms
CHEM C589	1.5 Credit	Prerequisite: C588; C342, C483/C484, or Instructor consent ¹
CHEWI C30)		Enzyme mechanisms demonstrate how chemical principles are employed by living
		organisms. The course will cover several classes of enzymes, for example, hydrolases,
		phosphorylases, kinases, carboxylases, and transferases. Focus will also be placed on the
		roles of cofactors in catalysis.
CHEM C682	1.5 credit	Introduction to Chemical Biology II
		Basic elements of chemical biology applications and uses of technology. This course will
		cover microarray technology, protein labeling, chemical genetics; small molecule
		interactions with proteins/DNA; modulation of protein-protein interactions; RNA aptamers and molecular evolution.
CHEM C502	3 credit	Inorganic Spectroscopy
CHEWI C502	3 Cledit	Prerequisite: C361
		Chemical applications of group theory and the elucidation of structure and bonding in
		inorganic molecules and complexes by vibrational, nuclear magnetic resonance, Mossbauer
		and electronic absorption spectroscopy.
CHEM C632	3 credit	Metal Ions in Biological Systems
		Introduction to the field of bioinorganic chemistry and spectroscopic methods for
		determining structure/function relationship of metal ions in biology. Emphasis on oxygen
		carriers, metal ion transport and storage, as well as oxidoreductases involved in oxygen,
		hydrogen, and nitrogen metabolism.
CHEM C620	2 credit	Measurement Science
		Topics related to measurement in the chemical sciences and interdisciplinary fields of
		science and engineering. Special attention to perspectives on advanced instrumentation and
		application of new hybrid techniques to areas such as biomedical, environmental, energy,
DIO G D (OO)	4 7 11	or other areas of interest.
BIOC B680/	1.5 credit	Special Topics in Biochemistry: Biomolecular NMR Spectroscopy
CHEM C687		Prerequisite: B530/C581 or Instructor consent ¹ Modern NMR structure determination of proteins, protein-ligand complexes, and
		regulatory RNAs, from sample preparation to residue-specific resonance assignments to
		structure determination.
BIOC B680/	1.5 credit	Special Topics in Biochemistry: Digital Imaging Light and Electron Microscopy
CHEM C687	1.5 credit	Prerequisite: Instructor consent ¹
CHEW COOT		A general introduction to the theory and practice of microscopy is provided starting with
		the properties of light interacting with matter. The principles of modern optical imaging
		devices and electronic detectors are covered in detail and with perspective on techniques.
		Students spend equal time in lecture and in the Light Microscopy Imaging Center working
		in small groups with different imaging systems.
BIOC B680/	1.5 credit	Special Topics in Biochemistry: Membranes and Membrane Proteins
CHEM C687		Prerequisite: Instructor consent ¹
		Provides a general understanding of the physical and chemical forces that hold membranes
		together that give rise to the structure and function of biological membrane assemblies;
DIIVO DEGE	2 114	molecular characteristics of lipids and membrane proteins in cell biological processing
PHYS P575	3 credit	Introduction to Biophysics
		Physics P575 presents an introduction to Biophysics. Topics include: properties of biomolecules and biomolecular complexes; biological membranes, channels, neurons;
		Diffusion, Brownian motion; reaction-diffusion processes, pattern formation; sensory and
		motor systems; psychophysics and animal behavior, statistical inference.
PHYS P581	3 credit	Modeling and Computation in Biophysics
1110101		Introduction to modeling and computational methods applied to phenomena in Biophysics.
		Topics: population dynamics; reaction kinetics; biological oscillators; coupled reaction
		networks; network theory; molecular motors; limit cycles; reaction diffusion models; the
		heart; turning instability; bacterial patterns; angiogenesis.
-	•	

PHYS P582	3 credit	D'. L
PH 13 P362	3 credit	Biological and Artificial Neural Networks Biological details of neurons relevant to computation. Artificial neural network theories
		and models, and relation to statistical physics. Living neural networks and critical
		evaluation of neural network theories. Students' final projects will consist of programming
		networks and applying them to current research topics.
PHYS P583	3 credit	Signal Processing and Information Theory in Biology
		Probability and statistics. Filtering. Correlation functions and power spectra. Time
		invariant and time-varying systems. Shannon Information. Coding and decoding. Processing of sensory signals and other applications to neurobiology and psychophysics.
PHYS P676	3 credit	Selected Topics in Biophysics
		This course presents papers on current topics in Biophysics, together with key classical
		papers related to those topics. Student participation in discussions is essential. Each student is expected to write two essays on two of the topics presented.
		1 1
BIOC B511	3 credit	Duplicating and Expressing the Genome
		Attain an advanced level of understanding of the molecular basis of DNA
		replication and its control; comprehend the molecular basis of gene expression and
		its control; understand the interplay between chromatin and nuclear structure and
DIOI 1.510	2 17	replication and transcription; evaluate primary literature in this field.
BIOL L519	3 credit	Bioinformatics: Theory and Application Overview of theory and applications in bioinformatics, based on fundamentals of
		molecular biology and information sciences. Common problems, data, and tools in the field
		are outlined. These include biosequence analysis, alignment and assembly, genomics,
		proteomics and phylogenetics, biological databases and data mining, and Internet bio-
		information services.
BIOC B601/	1.5 credit	Advanced Nucleic Acid Biochemistry
CHEM C683		Prerequisite: B501/C584 or Instructor consent ¹
(inactive)		Mechanistic analysis of nucleic acid metabolism; specificity and role of DNA polymerases
		and repair pathways; DNA replication and recombination mechanisms; RNA structural motifs and physical properties; RNA synthesis and processing in gene expression; catalytic
		RNA molecules; applications of RNA molecules.
BIOC B602	1.5 credit	Advanced Protein Biosynthesis and Processing
(inactive)	The Create	Prerequisite: B501/C584 or Instructor consent ¹
(,		Detailed analysis of protein synthesis, post-translational modification, and macromolecular
		assembly, including the role these modifications play in mature protein function,
		biosynthesis, structure, function, and analysis of complex oligosaccharides.
BIOC B604/	1.5 credit	Structural Methods
CHEM C686		Prerequisite: B530/C581 or Instructor consent ¹ Fundamental principles of circular dichroism puglear magnetic reconnect and Y ray.
(inactive)		Fundamental principles of circular dichroism, nuclear magnetic resonance and X-ray crystallography in the study of protein and nucleic acid structures. Theoretical and
		practical aspects will be presented, with particular emphasis on application strategies.
BIOC B605/	1.5 credit	Structure and Function of Membranes
CHEM C585	1.0 Grount	Prerequisite: B501/C584, B530/C581 or Instructor consent ¹
(inactive; to		Biochemistry and biophysics of lipids, membranes, and membrane proteins; fundamentals
be reinstated)		of membrane transport; interfacial catalysis; protein trafficking and quality control.
	1	1

¹Instructor consent: To receive consent, please e-mail the professor assigned to the course to request permission to enroll in course of interest. If it is a specialized course, it would be helpful to provide the professor information regarding your previous courses taken to demonstrate basic knowledge of selected topic.

Course Missing Date and Time

If there is no date or time provided to a course listing in the academic bulletin, it means the course will be arranged to student availability by the assigned instructor. Please contact the professor via e-mail to facilitate date and time arrangements.