

Christopher am Ende Pfizer, Inc.

Host: Nikki Pohl

Design and Application of Clickable BACE and \u03b7-Secretase Probes for Chemoproteomic Profiling and Mechanism of Action Studies

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a decline in cognitive function and is ultimately fatal. The accumulation of amyloid β (A β) plaques consisting primarily of A β 42 have been implicated in the pathology of AD. The neurotoxic amyloid peptides are formed by sequential cleavage of the amyloid precursor protein (APP) by β -aspartyl secretase (BACE) and γ -secretase. Inhibition or modulation of both BACE and γ -secretase has emerged as promising approaches for treating AD. Initial BACE inhibitors in the clinic were plagued by ocular toxicity. Using quantitative chemoproteomics with a clickable photoaffinity probe, we reveal that inhibition of cathepsin D (CatD) is the principal off-target of BACE inhibitors and quantifying CatD target engagement in cells is predictive of ocular toxicity. Additionally, γ -secretase has also been beset by challenges with toxicity related to the inhibition of the Notch signaling pathway, which is critical for cell differentiation. γ -secretase modulators (GSMs) were developed to specifically reduce A β 40/42 production without affecting the processing of other substrates.

For further details, contact Mr. Steven Watkins at 5-9749

QCB Seminar Series

Co-hosted by the Department of Chemistry and the Graduate Program in Biochemistry

FRIDAY
October 28
CHEMISTRY
C033
2:30 p.m.