Physical


Elucidating the principles of nuclear, atomic, molecular, and mesoscopic processes

As physical chemists we address the “why” and the “how” of physical, chemical, and biological processes. Our interests are multidisciplinary and span a wide domain from the subatomic to the cellular. Both experimental and theoretical efforts aim to understand and control the systems we study. Students are educated as scientists by working, within a collaborative environment, on fundamental questions at the forefront of the field.

Faculty

Chun-Hsing (Josh) Chen Xinfeng (Frank) Gao Yaroslav Losovyj Sylvie Hudan Irina Tsvetkova David Clemmer Romualdo deSouza Bogdan Dragnea Amar Flood Gary Hieftje Srinivasan S. Iyengar Caroline Chick Jarrold Martin F. Jarrold Liang-shi Li Peter Ortoleva Jonathan Raff Krishnan Raghavachari James Reilly Sara E. Skrabalak Philip S. Stevens Steven L. Tait Megan Thielges

Research

Chemical Mechanisms in the Atmosphere that Influence Air Quality and Global Climate Change

Chemical Mechanisms in the Atmosphere that Influence Air Quality and Global Climate Change

An accurate understanding of this chemistry is essential to assess, control, and predict the impact of anthropogenic perturbations on the chemical and radiative properties of the atmosphere. Research projects in our group include laboratory kinetics experiments...
Chemistry, Computational Physics and Applied Mathematics

Chemistry, Computational Physics and Applied Mathematics

The Iyengar group develops new theoretical and computational methods for problems in biophysical, atmospheric and nano chemistry. Current efforts include rigorous treatment of hydrogen transfer reactions in enzymes, hydrogen-bonding in atmospheric and...
Connecting Disparate Natural Forms of Macromolecular Self-Assembly

Connecting Disparate Natural Forms of Macromolecular Self-Assembly

We are experimentalists trying to develop an understanding of the fundamental principles that may connect seemingly disparate natural forms of macromolecular self-assembly such as virus shells and the fly eye. We also practice virus taxidermy for...
Developming New Methods in Electronic Structure Theory

Developming New Methods in Electronic Structure Theory

Our research is focused on the development of new methods in electronic structure theory and their applications to a broad range of challenging problems in molecular and material science. Current projects in our group include new electronic embedding...
Electron Guns, Lasers, Molecular Beams and Differentially Pumped Vacuum Chambers

Electron Guns, Lasers, Molecular Beams and Differentially Pumped Vacuum Chambers

Electron guns, lasers, molecular beams and differentially pumped vacuum chambers are the tools used in CC Jarrold group, where the research projects focus on issues of energy and the environment. We use a powerful combination of anion spectroscopic...
Investigating Nuclei and Nuclear Matter Under Extreme Conditions

Investigating Nuclei and Nuclear Matter Under Extreme Conditions

In the Nuclear Chemistry group we investigate nuclei and nuclear matter under extreme conditions of temperature, pressure, shape, and neutron-to-proton ratio. Our interests range from understanding the formation of the elements in supernova explosions...
Multiscale Techniques to Derive Principles of Nanosystem Behavior

Multiscale Techniques to Derive Principles of Nanosystem Behavior

The Ortoleva group uses multiscale techniques to derive principles of nanosystem behavior from laws of molecular physics. With support from the NSF, DOD, DOE and NIH, they study quantum dot, superconducting and graphene nanoparticles, viral processes,...
Phase Transition in Small Systems

Phase Transition in Small Systems

Phase transition in small systems, such as how the melting and freezing transitions change as a function of the number of atoms in nano-clusters with less than 200 atoms.  Properties of liquid nanoclusters. Charge separation in the break-up of water ...